
15-418 Project Proposal
Gary Gao, Mingxuan Li

wgao2@andrew.cmu.edu, mingxua3@andrew.cmu.edu

Basic Information

• Title: Parallelization and Analysis of Algorithm for Maximum Flow Problems

• Group Members: Gary Gao (wgao2), Mingxuan Li (mingxua3)

• Project Page: https://garygao33.github.io/ParallelFlow/

Short Summary

This project aims to implement and parallelize algorithm(s) for maximum flow problems using
shared address space framework (OpenMP) on CPU. Detailed analyses of the algorithm’s perfor-
mance characteristics will also be performed.

Backgrounds

The maximum flow problem is a foundational problem in combinatorial optimization, with wide-
ranging applications in computer networks, transportation systems, computer vision, bipartite
matching, and more. Given a directed graph where each edge has a capacity, the objective is to
compute the maximum amount of flow that can be sent from a source node to a sink node, subject
to capacity constraints and flow conservation.

Several algorithms exist for solving this problem, including the Ford-Fulkerson method and its
refinements such as Edmonds-Karp. However, one of the most efficient and structurally suitable
algorithms for parallelization is Dinic’s algorithm. Unlike Ford-Fulkerson variants that augment
one path at a time, Dinic’s algorithm works in phases, each of which involves constructing a level
graph via BFS and computing a blocking flow in that graph. These structured phases and the
potential for simultaneous flow augmentations make Dinic’s algorithm have a potential for parallel
execution.

The high-level pseudocode for Dinic’s algorithm is as follows:

Dinic(G, s, t):

initialize flow f(e) = 0 for all edges e in G

while BFS(G_f, s, t) builds a level graph:

while there exists a path p in level graph from s to t:

send flow along p using DFS

update residual capacities

return total flow from s to t

Dinic’s algorithm offers some major points of parallelism:

1



Project Proposal 15-418 Gary Gao, Mingxuan Li

• Parallel BFS (Level Graph Construction): The BFS traversal used to build the level graph can
be parallelized using a level-synchronous model. All nodes in the current frontier can explore
their neighbors concurrently. This step benefits from atomic updates or bitmask-based visited
arrays.

• Parallel Blocking Flow Computation: Once the level graph is built, multiple augmenting
paths can be found simultaneously using concurrent DFS routines. As long as the paths are
edge-disjoint or non-conflicting, flow can be pushed in parallel and the residual graph updated
using lock-free or atomic operations. This step may involve node or edge marking to prevent
contention and ensure correctness.

Challenges

Parallelizing Dinic’s algorithm is non-trivial due to the dynamic nature of the residual graph and the
tight dependencies between operations. After each flow is pushed along a path, the graph changes
immediately, potentially invalidating other concurrent paths being explored. Ensuring correctness
in this context requires careful coordination, such as using atomic operations or conflict detection,
both of which introduce overhead and complexity. Another challenge is the inherent irregularity
of graph structure. In both synthetic and real-world graphs, node degrees can vary significantly,
leading to uneven workloads across threads. This is especially problematic during the DFS-based
blocking flow computation, where some threads may complete quickly while others follow long or
useless paths. Such divergence causes load imbalance and makes it difficult to efficiently utilize
parallel resources. Furthermore, the algorithm’s control flow is highly data-dependent. Whether
a node or edge is visited or used in an augmenting path depends on capacities that change at
runtime. This dynamic behavior complicates parallel scheduling and synchronization, particularly
when trying to extract disjoint augmenting paths or perform simultaneous residual updates safely.

Dinic’s algorithm alternates between two phases: level graph construction (BFS) and blocking flow
computation (DFS). The BFS phase has a more structured, level-synchronous nature and exhibits
better spatial and temporal locality, making it well-suited to parallelization. Nodes at the same
level can be explored concurrently, and memory access patterns during this phase are relatively
predictable. In contrast, the DFS phase is irregular, with each thread maintaining its own path
stack. Access patterns here are less predictable and often pointer-chasing through adjacency lists.
There’s low locality and high contention when threads update residual capacities or shared metadata
like visited flags or flow values. Augmenting flow requires writing to both forward and reverse edges,
which may be accessed by other threads, raising the potential for conflicts. On multicore CPUs,
the key challenges include synchronization overhead, especially with fine-grained locks or atomic
operations on shared graph structures. Cache locality is poor during DFS due to scattered memory
access, and contention on frequently accessed data structures (like adjacency lists or level arrays)
can reduce performance. Balancing work across threads in the presence of irregular subgraph sizes
is another difficulty.

Resources

We will use the GHC machines (which have up to 8 cores) and the PSC machines (which support up
to 128 threads) for experiments with parallel algorithms. This would allow us to perform analyses
on the performances in a similar fashion to the recent programming assignments.

2



Project Proposal 15-418 Gary Gao, Mingxuan Li

We will be implementing the algorithm from scratch, using C++ and OpenMP. We will refer to
lecture notes from 15-451 (which are publicly available on the course website) for problem setup and
algorithm overview. We will also implement testing code with some reference to the programming
assignments in this course.

Currently, we do not see any necessity in using additional resources, including special machines.

Goals and Deliverables

We plan to achieve the following goals on :

• Implement a successful and efficient sequential version of the Dinic’s algorithm.

• Implement a parallel version of the algorithm using OpenMP that can achieve reasonable
speedup (we are unable to provide specific speedup numbers without further exploration).

• We will run experiments on GHC and PSC machines to analyze the performance. The
experiments will include inputs of differing characteristics (e.g. graph size, density of the
edges, edge capacities, etc.).

If we have extra time, we may explore parallelization of the Edmonds-Karp algorithm, or try to
implement a parallel version for GPU using CUDA.

For the analysis component, our aim is to understand how well the algorithm adapts to parallel
execution on a shared-memory system using OpenMP. Specifically, some questions are: how do
different phases of the algorithm, such as level graph construction (BFS) and blocking flow com-
putation (DFS), scale with increasing thread count, and which parts become bottlenecks due to
synchronization or load imbalance. We also hope to analyze how graph structure (e.g., density, de-
gree distribution, or size) affects parallel performance and whether certain graph types benefit more
from parallelism than others. These insights will inform both algorithm design and system-level
optimization strategies for irregular workloads such as graph processing.

Platform Choice

As mentioned in previous sections, we will be using C++ and OpenMP for implementation and the
GHC and PSC machines for experiments and performance analysis. Using these readily available
machines not only minimizes the cost of this project but also facilitates experimental processes
considering our familiarity with these machines.

C++ with OpenMP is well suited to implement Dinic’s algorithm due to its combination of perfor-
mance, control, and shared memory systems. C++ provides efficient data structures and low-level
memory control, which is important for handling irregular access patterns of graph algorithms.
OpenMP allows for efficient parallelization of key components through pragma directives, while
also supporting thread-private variables and atomic operations needed to safely update shared
data such as residual capacities. This platform is ideal for exploiting the coarse-grained parallelism
of Dinic’s algorithm on multicore CPUs without the complexity of managing threads manually or
dealing with GPU-specific challenges like control-flow divergence.

3



Project Proposal 15-418 Gary Gao, Mingxuan Li

Schedule

• Week 1 (Mar 26 - Apr 1): Review the problem setup and algorithm. Brainstorm possible
implementations.

• Week 2 (Apr 2 - Apr 8): Implement a sequential version of the algorithm. Produce basic
suites of test inputs of different characteristics for performance analysis.

• Week 3 (Apr 9 - Apr 15): Implement initial, basic parallel implementations. Analyze the
weaknesses and bottlenecks to prepare for improved versions. Complete the milestone report.

• Week 4 (Apr 16 - Apr 22): Improve parallel implementation. Finish building all test inputs
for complete analysis.

• Week 5 (Apr 23 - Apr 28): Run the experiments and perform analysis. Complete the final
report and the poster.

4


