
Background

Maximum FlowSummary
● We parallelized Dinic’s

algorithm using the
shared-address-space framework
OpenMP.

● We evaluated the performance
of our two parallel versions, the
edge flow reservation approach
and the disjoint paths approach,
on various inputs using CPU
machines and analyzed their
trends of scalability and
sensitivity to inputs.

● We demonstrated the overall
desirability of the edge-disjoint
approach and showed the input
graph characteristics such as
density and size have noticeable
impact on speedups.

● Directed graph with edge capacities
● Flow constraints

○ For all edges, flow ≤ capacity
○ For all nodes except source and sink,

flow in = flow out
● What’s the maximum flow that can be sent

from source to sink?
● Many applications: network routing,

bipartite matching, image segmentation….

Background

Dinic’s Algorithm Inputs
while successfully builds a level graph:

while can find an augmenting path p:
send flow along p
update residual capacities

return total flow from s to t

● Alternating phases until converge

Build Level Graph
● Level as implicit graph
● Building frontiers

Compute Blocking Flow
● Find augmenting paths
● Mark used/dead edges
● Multiple augmenting

paths for a blocking flow

Sparse Graphs:
● #edges far from maximum
● Randomly generated given

specified number of vertices
and out-degree

● Randomized capacities

Dense Graphs:
● #edges “close” to maximum
● Structurally generated as

layered graphs with
specified size and depth

● Randomized capacities

Why control size/density/depth?
● Sensitivity studies

Method: Parallel Level Construction

● Builds level graph one layer at a time

● Data parallelism: Parallelized
neighborhood search over vertices
within a layer

● Merge all the neighborhoods of vertices
in the previous layer to form the new
frontier (layer)

● Issue: Without further management, repeated vertices may be added, the
number of repeated vertices explode as the search goes to higher levels

● Solution: Use atomic compare and exchange primitives to ensure each vertex
is only added once

● Synchronization: adding vertices to the global new frontier list must be
protected as critical sections

Method: Parallel Path Augmentation

Edge Flow Reservation Approach

● Parallelly consider several path
candidates

● Augmented each path and reserve
blocking flow

● Backtrack after reach sink

● Return excessively reserved flow

Method: Parallel Path Augmentation

Disjoint Paths Approach
● Parallelism over augmenting path

searching directions

● Multiple threads explore
edge-disjoint augmenting paths

● Recall that a next-edge pointer array
is maintained to ensure one edge is
only traversed once

● Synchronization: maintain the atomicity of operations on next-edge pointer
arrays to ensure correctness of traversal

● Simultaneous updates in edge-disjoint paths: no data race issue since threads
don’t update the same edge

Results

Scalability
● Randomly generated, relatively

sparse large inputs

● Disjoint paths approach has better
scalability overall

● Edge flow reservation approach
provide little speedup: high
contention and extra rollback work

● Decreasing performance at high
thread counts: contention with
coincided next edge pointer accesses

● Bad locality: irregular pointer
chasing, high cache miss rate

Results

Sensitivity
● 8-thread speedups

● Edge flow reservation approach
shows low sensitivity: overall
inefficiency dominates behavior

● Disjoint path approach shows
higher speedup for denser graphs:
parallelization over outgoing edges

● Disjoint path approach shows
higher speedup for larger graphs:
balanced workload and less
contention

Results

Deeper Analysis

● Runtime breakdown for two
approaches tested on the standard hard
input: no drastic difference between
runtimes spent in the two phases

● Parallelism in level graph construction
phase and blocking flow computation
equally influential to overall compute
time speedup.

● Edge flow reservation approach
has acceptable speedup for the first
phase but terrible slowdown in the
second phase

● Edge flow reservation approach
suffers from contention and extra
work that scale with thread count

