Carnegie

%gg’(f)‘?sity B a C k g ro u n d

Summary

e We parallelized Dinic’s
algorithm using the
shared-address-space framework
OpenMP.

e We evaluated the performance
of our two parallel versions, the
edge flow reservation approach
and the disjoint paths approach,
on various inputs using CPU
machines and analyzed their
trends of scalability and
sensitivity to inputs.

e We demonstrated the overall
desirability of the edge-disjoint
approach and showed the input
graph characteristics such as
density and size have noticeable
impact on speedups.

Maximum Flow

e Directed graph with edge capacities
e Flow constraints
o For all edges, flow <capacity
o For all nodes except source and sink,
flow in = flow out
e What’s the maximum flow that can be sent
from source to sink?
e Many applications: network routing,
bipartite matching, image segmentation....

277

Carnegie

%‘ﬂyf)‘?ﬂw Carligieellon B a c kg ro u n d

Dinic’s Algorithm Inputs
while successfully builds a level graph: Sparse Graphs:
while can find an augmenting path p: ® #edges far from maximum
send flow along p e Randomly generated given
update residual capacities specified number of vertices
return total flow from s to t and out-degree

. _ e Randomized capacities
e Alternating phases until converge

_ Dense Graphs:
Build Level Graph e #edges “close” to maximum
° Le\./el.as lmph?lt graph e Structurally generated as
e Building frontiers e layered graphs with
: specified size and depth
Compute Blocking Flow o 1z 3 a-1 e Randomized capacities

e Find augmenting paths -

e Mark used/deadedges @ Q _ /. T . .

e Multiple augmenting A?@ Why control size/density/depth?
paths for a blocking flow ~ _/O—O-- o e Sensitivity studies

Carnegie

vt [Re2N Method: Parallel Level Construction

e Builds level graph one layer at a time

e Data parallelism: Parallelized
neighborhood search over vertices
within a layer

e Merge all the neighborhoods of vertices
in the previous layer to form the new
frontier (layer)

e Issue: Without further management, repeated vertices may be added, the
number of repeated vertices explode as the search goes to higher levels

e Solution: Use atomic compare and exchange primitives to ensure each vertex
is only added once

e Synchronization: adding vertices to the global new frontier list must be
protected as critical sections

Carnegie
Mellon
University

e Parallelly consider several path e Backtrack after reach sink
candidates
e Augmented each path and reserve e Return excessively reserved flow

blocking flow

Carnegie

eion IR Method: Parallel Path Augmentation

Disjoint Paths Approach

e Parallelism over augmenting path
Q searching directions
e Multiple threads explore
Q Q edge-disjoint augmenting paths
e Recall that a next-edge pointer array
1s maintained to ensure one edge 1s

only traversed once

e Synchronization: maintain the atomicity of operations on next-edge pointer
arrays to ensure correctness of traversal

e Simultaneous updates in edge-disjoint paths: no data race issue since threads
don’t update the same edge

Carnegie
Mellon
University

Results

Scalability

Randomly generated, relatively
sparse large inputs

Disjoint paths approach has better
scalability overall

Edge flow reservation approach
provide little speedup: high
contention and extra rollback work

Decreasing performance at high
thread counts: contention with
coincided next edge pointer accesses

Bad locality: irregular pointer
chasing, high cache miss rate

Speed-up
°© b= = = L7 =
© o N > o o

o
o

Speed-up

PSC - Total Compute Time (Edge Flow Reservation Approach)

—@— easy
- medium
—a&— hard

24 8 16 32 64 128
Thread Count

PSC - Total Compute Time (Disjoint Paths Approach)

—@— easy
5 medium
—&— hard

A4

24 8 16 32 64 128
Thread Count

Carnegie
Mellon
University

Results

Sensitivity
e &-thread speedups

e FEdge flow reservation approach
shows low sensitivity: overall
inefficiency dominates behavior

e Disjoint path approach shows
higher speedup for denser graphs:
parallelization over outgoing edges

e Disjoint path approach shows
higher speedup for larger graphs:
balanced workload and less
contention

Speed-up (T1/ Ts)

Speed-up (T1/ Ts)

GHC - Speed-up (1-8 Threads) vs. Vertex Count

—— Disjoint Paths
Edge Flow Reservation

e

25000 50000

Number of Vertices

10000

GHC - Speed-up vs. Graph Density (50 k vertices)

—&— Disjoint Paths
Edge Flow Reservation 4

100 250 500
Graph Density (average vertex out degree)

Carnegie
Mellon
University

Results

Deeper Analysis

PSC - Blocking Flow Computation (Edge Flow Reservation Approach)

PSC - Level Graph Construction (Edge Flow Reservation Approach)

Absolute Runtime Decomposition

- casy
1.1 medium
—A— hard

1.0

0.9

208

a07

0.6

-~ easy 1.6
1.4 A
1.2 A
1.0 A

o

& 0.8
0.6 -

0.4

0.5

0.4

0.2 4

0.0~

Level Path Level path
ConstructionAugmentation

248 16 2 64 128 2a 8 16

Thread Count

e Edge flow reservation approach
has acceptable speedup for the first
phase but terrible slowdown in the
second phase

e Edge flow reservation approach
suffers from contention and extra
work that scale with thread count

32

64 128 Disjoin t

)
Thread Count Paths Reservation

e Runtime breakdown for two
approaches tested on the standard hard
input: no drastic difference between
runtimes spent in the two phases

e Parallelism in level graph construction

phase and blocking flow computation
equally influential to overall compute
time speedup.

ConstructionAugmentation

